Social Recommendation Using Low-Rank Semidefinite Program

نویسندگان

  • Jianke Zhu
  • Hao Ma
  • Chun Chen
  • Jiajun Bu
چکیده

The most critical challenge for the recommendation system is to achieve the high prediction quality on the large scale sparse data contributed by the users. In this paper, we present a novel approach to the social recommendation problem, which takes the advantage of the graph Laplacian regularization to capture the underlying social relationship among the users. Differently from the previous approaches, that are based on the conventional gradient descent optimization, we formulate the presented graph Laplacian regularized social recommendation problem into a low-rank semidefinite program, which is able to be efficiently solved by the quasi-Newton algorithm. We have conducted the empirical evaluation on a large scale dataset of high sparsity, the promising experimental results show that our method is very effective and efficient for the social recommendation task.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

S-semigoodness for Low-Rank Semidefinite Matrix Recovery

We extend and characterize the concept of s-semigoodness for a sensing matrix in sparse nonnegative recovery (proposed by Juditsky , Karzan and Nemirovski [Math Program, 2011]) to the linear transformations in low-rank semidefinite matrix recovery. We show that ssemigoodness is not only a necessary and sufficient condition for exact s-rank semidefinite matrix recovery by a semidefinite program,...

متن کامل

Grothendieck inequalities for semidefinite programs with rank constraint

Grothendieck inequalities are fundamental inequalities which are frequently used in many areas of mathematics and computer science. They can be interpreted as upper bounds for the integrality gap between two optimization problems: A difficult semidefinite program with rank-1 constraint and its easy semidefinite relaxation where the rank constrained is dropped. For instance, the integrality gap ...

متن کامل

Lower bounds on matrix factorization ranks via noncommutative polynomial optimization

We use techniques from (tracial noncommutative) polynomial optimization to formulate hierarchies of semidefinite programming lower bounds on matrix factorization ranks. In particular, we consider the nonnegative rank, the positive semidefinite rank, and their symmetric analogues: the completely positive rank and the completely positive semidefinite rank. We study the convergence properties of o...

متن کامل

On the low-rank approach for semidefinite programs arising in synchronization and community detection

To address difficult optimization problems, convex relaxations based on semidefinite programming are now common place in many fields. Although solvable in polynomial time, large semidefinite programs tend to be computationally challenging. Over a decade ago, exploiting the fact that in many applications of interest the desired solutions are low rank, Burer and Monteiro proposed a heuristic to s...

متن کامل

Free Material Optimization with Fundamental Eigenfrequency Constraints

The goal of this paper is to formulate and solve free material optimization problems with constraints on the smallest eigenfrequency of the optimal structure. A natural formulation of this problem as linear semidefinite program turns out to be numerically intractable. As an alternative, we propose a new approach, which is based on a nonlinear semidefinite low-rank approximation of the semidefin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011